An Efficient Online Hierarchical Supervoxel Segmentation Algorithm for Time-critical Applications

نویسندگان

  • Yiliang Xu
  • Dezhen Song
  • Anthony Hoogs
چکیده

Video segmentation has been used in a variety of computer vision algorithms as a pre-processing step. Despite its wide application, many existing algorithms require preloading all or part of the video and batch processing the frames, which introduces temporal latency and significantly increases memory and computational cost. Other algorithms rely on human specification for segmentation granularity control. In this paper, we propose an online, hierarchical video segmentation algorithm with no latency. The new algorithm leverages a graph-based image segmentation technique and recent advances in dense optical flow. Our contributions include: 1) an efficient, yet effective probabilistic segment label propagation across consecutive frames; 2) a new method for label initialization for the incoming frame; and 3) a temporally consistent hierarchical label merging scheme. We conduct a thorough experimental analysis of our algorithm on a benchmark dataset and compare it with state-of-the-art algorithms. The results indicate that our algorithm achieves comparable or better segmentation accuracy than state-ofthe-art batch-processing algorithms, and outperforms streaming algorithms despite a significantly lower computation cost, which is required for time-critical applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features

Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...

متن کامل

A supervoxel-based segmentation method for prostate MR images

PURPOSE Segmentation of the prostate on MR images has many applications in prostate cancer management. In this work, we propose a supervoxel-based segmentation method for prostate MR images. METHODS A supervoxel is a set of pixels that have similar intensities, locations, and textures in a 3D image volume. The prostate segmentation problem is considered as assigning a binary label to each sup...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

Accurate Fruits Fault Detection in Agricultural Goods using an Efficient Algorithm

The main purpose of this paper was to introduce an efficient algorithm for fault identification in fruits images. First, input image was de-noised using the combination of Block Matching and 3D filtering (BM3D) and Principle Component Analysis (PCA) model. Afterward, in order to reduce the size of images and increase the execution speed, refined Discrete Cosine Transform (DCT) algorithm was uti...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014